MATHS CLASS XII (Relations and Functions) Continuation.....

General direction for the students :-Whatever be the notes provided , everything must be copied in the Maths Copy and then do the Home work in the same Copy. g

COMPOSITION OF FUNCTIONS

Let $f: A \to B$ and $g: B \to C$ be two functions, then the function from A to C is defined as $g_0 f$ is known as composite function.

 \Rightarrow gof: $A \rightarrow C$ defined by $gof(x) = g(f(x)), \forall x \in A.$

- Composition of two function is also known as Resultant of two functions or the Function of Function.
- Here Range of f must be a subset of domain of g.

Properties of Composition functions

1. The composition of function is Associative

2. If f and g are one one, the gof is also one one but converse may not be true.

3. If f and g are onto, the gof is also onto but converse may not be true.

4. If $f : A \rightarrow B$ is a function and I_A , I_B are identity functions on A, B respectively, then

(i) $I_B of = f$ (ii) $f o I_A = f$

** For the explanation above points , watch the video class. Exercise 1.4

3. Given
$$A = \{1, 2, 3, 4\}$$
, $f ; A \to A$, $g : A \to A$
 $f = \{(1, 4), (2, 1), (3, 3), (4, 2)\}$, $g = \{(1, 3), (2, 1), (3, 2), (4, 4)\}$
i) $gof = \{(1, 4), (2, 3), (3, 2), (4, 1)\}$
ii) $fog = \{(1, 3), (2, 4), (3, 3), (4, 2)\}$
iii) $fof = \{(1, 2), (2, 4), (3, 3), (4, 1)\}$

6. Given $f : R \to R$ defined by $f(x) = x^2 - 3x + 2$

$$fof(x) = f(f(x)) = f(x^2 - 3x + 2)$$
$$= (x^2 - 3x + 2)^2 - 3(x^2 - 3x + 2) + 2$$
$$= x^6 + 6x^4 + 12x^2 + 7$$